NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter

نویسندگان

  • Thanh Vu
  • Dat Quoc Nguyen
  • Xuan-Son Vu
  • Dai Quoc Nguyen
  • Michael Catt
  • Michael Trenell
چکیده

This paper describes our NIHRIO system for SemEval-2018 Task 3 “Irony detection in English tweets.” We propose to use a simple neural network architecture of Multilayer Perceptron with various types of input features including: lexical, syntactic, semantic and polarity features. Our system achieves very high performance in both subtasks of binary and multi-class irony detection in tweets. In particular, we rank at least fourth using the accuracy metric and sixth using the F1 metric. Our code is available at: https://github.com/ NIHRIO/IronyDetectionInTwitter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topical Stance Detection for Twitter: A Two-Phase LSTM Model Using Attention

The topical stance detection problem addresses detecting the stance of the text content with respect to a given topic: whether the sentiment of the given text content is in FAVOR of (positive), is AGAINST (negative), or is NONE (neutral) towards the given topic. Using the concept of attention, we develop a two-phase solution. In the first phase, we classify subjectivity whether a given tweet is...

متن کامل

Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter

This paper describes the Amobee sentiment analysis system, adapted to compete in SemEval 2017 task 4. The system consists of two parts: a supervised training of RNN models based on a Twitter sentiment treebank, and the use of feedforward NN, Naive Bayes and logistic regression classifiers to produce predictions for the different sub-tasks. The algorithm reached the 3rd place on the 5-label clas...

متن کامل

CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings

This paper presents our approach for SemEval 2016 task 4: Sentiment Analysis in Twitter. We participated in Subtask A: Message Polarity Classification. The aim is to classify Twitter messages into positive, neutral, and negative polarity. We used a lexical resource for pre-processing of social media data and train a neural network model for feature representation. Our resource includes dictiona...

متن کامل

OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks

We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation significantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 te...

متن کامل

ValenTo: Sentiment Analysis of Figurative Language Tweets with Irony and Sarcasm

This paper describes the system used by the ValenTo team in the Task 11, Sentiment Analysis of Figurative Language in Twitter, at SemEval 2015. Our system used a regression model and additional external resources to assign polarity values. A distinctive feature of our approach is that we used not only wordsentiment lexicons providing polarity annotations, but also novel resources for dealing wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018